

The Integration Challenge

State-Federal RPS Collaborative Webinar

Hosted by Clean Energy States Alliance August 28, 2012

Housekeeping

- All participants will be in listen-only mode throughout the broadcast.
- You can connect to the audio portion of the webinar using your computer's speakers or a headset. You can also connect by telephone. If by phone, please enter the PIN number shown on the webinar console.
- You can enter questions for today's event by typing them into the "Question Box" on the webinar console. We will answer your questions, as time allows, following the presentations.
- This webinar is being recorded and will be made available after the event on the CESA website at

www.cleanenergystates.org/projects/state-federal-rps-collaborative

State-Federal RPS Collaborative

- With funding from the Energy Foundation and the US Department of Energy, the Clean Energy States Alliance facilitates the Collaborative.
- Includes state RPS administrators and regulators, federal agency representatives, and other stakeholders.
- Advances dialogue and learning about RPS programs by examining the challenges and potential solutions for successful implementation of state RPS programs, including identification of best practices.
- To get the monthly newsletter and announcements of upcoming events, sign up for the listserv at:
 - www.cleanenergystates.org/projects/state-federal-rps-collaborative

The Integration Challenge

Presenters:

- Lisa Schwartz, Senior Associate, Regulatory Assistance Project
- Kenneth Schuyler, Manager, Renewable Services,
 PJM Interconnection

Contact Information

www.cleanenergystates.org

Warren Leon

Phone: 978-317-4559

Email: WLeon@cleanegroup.org

Integrating Renewable Energy Into the Western U.S. Grid: Challenges and Opportunities

State-Federal RPS Collaborative

Lisa Schwartz

Western U.S. Electric System

37 balancing authorities* in the Western Interconnection

• 14 states, 2 Canadian provinces, N. Baja

 Outside organized energy markets (AESO, CAISO) + some pilots, energy and transmission are scheduled hourly

• 2 federal agencies market power from dams, own/control much transmission

 Utilities choose resources based on their long-term plans and competitive bidding (utility-owned plants or contracts)

Transmission development largely by utilities (not merchant)

BANC

• State renewable energy standards in place today will more than double renewable resources in Western U.S. by 2022, compared to 2010

Balancing Authorities (37

^{*}Balancing authorities maintain load-interchange-generation balance within their area and support interconnection frequency in real time

- New Western Governors'
 Association report explores ways to reduce costs for integrating wind and solar resources, barriers and possible state actions
- By RAP (lead), Exeter Associates & National Renewable Energy Laboratory
- Funded by Energy Foundation and U.S. Department of Energy
- Meeting Renewable Energy Targets in the West at Least Cost: The Integration Challenge **Executive Summary**
- Technical committee helped with scope, resources, review
- Focuses on operational and market tools, flexible demand and supply resources (not storage or expanding transmission)

Executive summary: http://www.westgov.org/index.php?option=com_joomdoc&task=doc_download&gid=1610
Full report: http://www.westgov.org/index.php?option=com_joomdoc&task=doc_download&gid=1610

- Variability The range of expected generation and load
 - Variability is reduced with more resources spread over a wider area because of the diversity of weather patterns.
- **Uncertainty** When and how much generation and load will change
 - Operators plan based on forecasts of loads and generation sources.
 - Uncertainty of wind and solar output is due to unknown changes in weather.

SunEdison facility, Aurora, Colo.

- Conventional units also impose integration costs.
 - For example, new inexpensive baseload plants can cause other units to incur cycling costs and lower their capacity factor.

NREL

How Can Grid Flexibility Be Increased?

Improved institutional flexibility

- Fast energy markets and short scheduling intervals for transmission
- Balancing wind and solar resources over a large geographic area to net out changes in load and generation
- Use advanced solar and wind forecasting techniques
- Make better use of existing transmission capacity

A more flexible generating fleet

- Cost-effective modifications of existing plants may be possible to improve load-following capability (ramp rate up and down, lower minimum load and faster startup capability)
- For new generating plants, focus on flexibility
- **Demand response** Some loads can respond rapidly (up and down) with automation
- Adequate transmission
- **Energy storage** Such as pumped hydro, batteries, compressed air, plug-in electric vehicles

Broad Conclusions of Report

- The Western grid is operated inefficiently.
 - Hourly scheduling
 - Insufficient automation

- We're spending more than needed for integration.
 - Carrying too many reserves, and dispatching higher cost generation when lower cost generation is available
- Integrating high levels of renewable resources reliably and affordably will require unprecedented cooperative action.
- States can accelerate efforts to reduce costs, such as:
 - Asking utilities and transmission providers what they are doing to put in place the recommendations in the report
 - Convening parties to discuss benefits of least-cost delivery of wind and solar resources and develop solutions to institutional barriers

1. Improve Institutional Flexibility

Expand subhourly dispatch and scheduling

Some 30-min. pilots in Western U.S. New FERC rules require all transmission providers to offer 15-minute scheduling or consistent/superior alternatives.

Key recommendations

o Evaluate costs/benefits, standardize intra-hour scheduling across West

Facilitate dynamic transfers

They allow the balancing authority <u>receiving</u> energy from wind or solar in another area to manage the intra-hour integration.

Key recommendation

Prioritize transmission improvements to increase transfer capability

Improve reserves management

Key recommendations

- Expand reserve-sharing
- Explore calculating reserves dynamically
- Equip more generation with Automatic Generation Control**

Assess benefits of using contingency reserves* for wind

^{*}Contingency reserves are generation or demand resources available as needed to maintain electric service reliability during unforeseen events, such as an unscheduled power plant outage. **AGC is equipment that automatically adjusts generation from a central location.

Implement an energy imbalance market

Imbalance energy = Scheduled energy - actual energy delivered

- Under proposed Western U.S. EIM, initial operating conditions for each hour would still be based on traditional bilateral transactions
- EIM would re-dispatch generation every 5 minutes to manage grid constraints and supply imbalance energy from least-cost resources
- Generation would be dispatched *across* balancing authority areas to resolve energy imbalances using the full geographic diversity in the EIM footprint.

Balancing occurs within each BA

Key recommendations

- Further study costs and benefits
- Address governance issues and concerns
- o Define rates and terms for transmission service agreements
- Support Northwest Power Pool's evaluation of an EIM and West-wide efforts to design an EIM for the broadest footprint

PUC EIM Group: http://www.westgov.org/PUCeim/index.htm; NWPP initiative: http://www.nwpp.org/mci/

Balancing occurs among BAs

Improve weather, wind and solar forecasting

- Wind and solar forecasts allow better scheduling of other resources
- <1/2 of Western balancing authorities use wind and solar forecasts</p>

- Key recommendation

 Encourage use of forecasts for day-ahead schedules/dispatch (uncommon in West now), not just same-day unit commitment

Take advantage of geographic diversity

 Spreading wind and solar plants over a larger area lowers aggregate variability and forecast errors, reducing reserves needs

- Key recommendations

 Consider sites that minimize variability of aggregate output and better match utility load profiles.

Alstom 2010. Photo courtesy of DOE/NREL

 Support right-sizing* of interstate lines that access renewable resources from stakeholder-designated zones – when project benefits exceed costs.

⁹

2. Explore Demand Response That Complements Variable Generation

- Some customer loads are flexible.
- Consider direct load control (e.g., for electric water heaters) and real-time pricing with automation to shift loads up and down to complement wind and solar resources.

Key recommendations

- Test value propositions to assess customer interest in strategies for demand response that complements wind and solar
- Encourage participation of third-party aggregators
- Allow demand response to compete on a par with supplyside alternatives for meeting resource needs

3. Develop a More Flexible Generating Fleet

At high levels of wind and solar, simply counting megawatts is inadequate for determining capacity needs. Instead, consider <u>flexible capabilities</u>:

- Assess whether some existing generating plants can be retrofitted to increase flexibility
 - Lower min. loads, reduce cycling costs, increase ramp rates
- Focus on flexibility for new generating plants
 - Key recommendations
 - Rethink resource adequacy analysis to reflect flexibility needs
 - Amend guidance for planning
 - Use competitive procurement to evaluate alternative flexible capacity solutions

About RAP

The Regulatory Assistance Project (RAP) is a global, non-profit team of experts that focuses on the long-term economic and environmental sustainability of the power and natural gas sectors. RAP has deep expertise in regulatory and market policies that:

- Promote economic efficiency
- Protect the environment
- Ensure system reliability
- Allocate system benefits fairly among all consumers

Learn more about RAP at www.raponline.org

Lisa Schwartz, senior associate Albany, Oregon 802-498-0723 (o); 541-990-9526 (m) lschwartz@raponline.org

Global

China

phone: 802-223-8199

fax: 802-223-8172

Integrating Renewable Energy in PJM

State-Federal RPS Collaborative August 28, 2012

Ken Schuyler Renewable Services PJM Interconnection

KEY STATISTICS	KE	ST	ATIS	STI	CS
-----------------------	----	----	------	-----	----

PJM member companies	750+
millions of people served	60
peak load in megawatts	163,848
MWs of generating capaci	ty 185,600
miles of transmission lines	65,441
GWh of annual energy	832,331
generation sources	1,365
square miles of territory	214,000
area served	13 states + DC
Internal/external tie lines	142

21% of U.S. GDP produced in PJM

As of 1/4/2012

State Renewable Portfolio Standards (RPS) require suppliers to utilize wind and other renewable resources to serve an increasing percentage of total demand.

DSIRE: www.dsireusa.org December 2011

State RPS Targets:

☼ NJ: 22.5% by 2021

☼ MD: 20% by 2022

☼ DE: 25% by 2026

☼ DC: 20% by 2020

☼ PA: 18%** by 2020

☆ IL: 25% by 2025

☼ OH: 25%** by 2025

☼ NC: 12.5% by 2021 (IOUs)

WV: 25%** by 2025

MI: 10% + 1,100 MW by 2015

VA: 15% by 2025

IN: 10% by 2025

[☼] Minimum solar requirement

^{**} Includes separate tier of "alternative" energy resources

Projected Renewable Energy Requirements in PJM

By 2026: 133,000 GWh of renewable energy, 13.5% of PJM annual net energy (41 GW of wind and 11 GW of solar)

Wind and Solar Requirements in PJM (MW)

Proposed Generation (MW) in PJM

As of January 4, 2012

Proposed Renewable Generation in PJM

As of January 4, 2012

Installed Solar in PJM Surpasses 1,000 MW

7

Increasing Wind Penetration in PJM

Impact of wind power variability and uncertainty:

Minute-to-Minute

 Additional generation needed to provide regulation

Intra-Hour

 Conventional generators must adjust output

Day Ahead

 Forecast errors cause overor under-scheduling

9 PJM©2012

Variability of Wind Generation

PJM Wind Output vs Installed Capability 2011

Wind Generation is Lower During Summer Months Therefore a Lower PJM Capacity Value

Mean Wind Capability Factor

 $Capability\ Wind\ Factor = rac{Average\ Wind\ Generation}{Total\ Wind\ Capability^*}$

July 21, 2011 – PJM New All-Time Peak

12

Impact of Increasing Wind Penetration

ISOs and RTOs reduce intermittent resource integration costs:

Characteristic	Impact to Wind Integration Cost
Larger balancing areas	 Reduces overall increase in variability Less regulation and ramping service required
Faster markets, i.e., shorter scheduling intervals (5-15 minutes)	 Less regulation required to accommodate intra-hour variations
Larger geographic area	 Increases wind diversity and reduces overall variability
Centralized wind power forecasting	 Cost-effective approach to reduce scheduling impacts
Regional / Interregional Transmission Planning	 Cost-effective upgrades to ensure grid reliability and mitigate congestion

PJM Initiatives to Address Operational and Reliability Impacts

Intermittent Resource Task Force (IRTF)

 Stakeholder group to address market, operational, and reliability issues specific to variable resources.

Energy Markets / Operations

- Implemented a centralized wind power forecast service.
- Implemented changes to improve wind resource dispatch / control.
- Demand Response / Price Responsive Demand improves operational flexibility

Ancillary Service Markets

- Implemented tariff changes to allow Energy Storage Resources to participate in PJM ancillary services markets
- Frequency Regulation new methodology to compensate better performing resources (like storage), per FERC Order No. 755
- Reduced minimum size for participating resources from 1MW to 100kW.

PJM Initiatives to Address Operational and Reliability Impacts

Transmission Planning

- Light load criteria implemented to improve grid reliability
- Expansion planning considers public policy impacts (i.e., RPS)
- Grid interconnection requirements for wind and solar being evaluated

Evaluating Potential Grid Impacts

 Initiated a PJM Renewable Integration Study (PRIS) to assess impacts to planning, markets, and operations

Advanced Technology Research Program

 Pilot programs are underway across the PJM footprint to evaluate new technologies and remove barriers to participation in PJM markets and operations.

Offers of Demand-Side Resources as Capacity in PJM by Delivery Year

Fast Regulation: Speed Matters...

Energy Storage (water heater) accurately following a regulation command signal A fossil power plant following a regulation command signal

- Flexible resources will be needed to offset the impacts of variable generating resources
- New market players:
 - Price Responsive Demand
 - Smart Grid Technologies
 - Energy Storage Resources
 - battery arrays
 - flywheels
 - compressed air energy storage
 - plug-in hybrid electric vehicles (PHEVs)
- Potential market changes:
 - New tools to co-optimize energy and ancillary service markets, and improve forecasting and scheduling capabilities
 - New market mechanisms to incent flexible resources

- The Western Governors Association Report includes recommendations to reduce renewable integration costs through increased grid flexibility:
 - √ Improved institutional flexibility
 - ✓ A more flexible generating fleet
 - ✓ Demand response
 - ✓ Adequate transmission
- PJM initiatives are in alignment with the report recommendations
- PJM Renewable Integration Study (PRIS) final report (expected Q1 2013) will include recommendations of additional measures that PJM should consider.